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ABSTRACT
Let A be a non-negative nxn matrix. In this paper we-study the

growth of the powers /A _, m = 1,2.3,,., These powers occur naturally

a s
in t:h: iteration process T — A i € #r
o

x(mﬂ) bk ‘(n). “(0) . B —

l § ¢

~which is important in applications and numerical techniques. Roughly

N
speaking, we-analydd the ”y‘itotic behavior of each entry of /A‘_-"i o
e g

\ ‘,6 APl
Wm"nain resu"it“to determine necessary and sufficient conditions

for the convergence to the spectral radius of A of certain ratios

naturally associated with the iteration above.
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Significance and Explanation

The matrix problem considered in this paper arises when studying the

iteration process

LIS DI )

where A and x(o) are non-negative. This situation occurs often in

mathematical economics, population genetics, numerical techniques and in 1

other fields.

The convergence of the above iterative procedure depends on the size of
the largest eigenvalue of A (the spectral radius, p(A)). In practice it is
laborious to compute the spectral radius directly, and approximate methods for i
estimating the spectral radius are important.

Using the notation of (*), let
(x(nol)) (x(m*l))

i i
(m) . Rm(x’ g (m) #

)i i (x )i

This paper determines necessary and sufficient conditions for t.(x) and

xm(x) « min
i (x

Qm(x) to tend to the spectral radius p(A) of A . It is then easy to compute

p{A) in practice. The above problem is completely analyzed by determining
the asymptotic behaviour of each entry of Am
For any non-negative x denote rix) = min(Ax)i/x‘ and R(x) = lax(Ax)i/x

i i
We determine necessary and sufficient conditions in terms of the reduced graph

g

of A such that

lim r(A"%) = R(A™X) = o(A).
m-se m-se

This is important for numerical procedure for calculating o0(A) - the spectral

radius of A .

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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THE GROWTH OF POWERS OF A NON-NEGATIVE MATRIX
pistritutions .. et
Shmuel Friedland and Mans Schneider Avaidari’ poyg Dol
1. Introduction. pvalle d/ov

gpecial
et A be a non-negative nxn matrix, In the iteration process Dist P

. {0
(1.1) Pl R L LR /‘7

m e

which is important in applications and numerical techniques, the powers A B a l,dvdyres

occur naturally. In this paper we study the growth of these powers. When A is irreduc-
ible or stochastic, the behavior of A. is well studied, e.g. Gantmacher (7, Ch., 13, §5-7],
varga (17, pp. 32-34]. In these cases, the elementary divisors belonging to the spectral
radius o(A) of A are linear. We deal here with the general non-negative case, when

the elementary divisors belonging to (o(A) may have degrees greater than 1 . At the

cont of ignoring nilpotent A , where the problem is trivial, we assuse that (A) = 1,

ror a complex n»n matrix A , with p{A) = 1, there is a4 least integer k for

which n-‘ A- is bounded, m = 1,2,3,... . However, even in the simple case of an
-k m -k n
imprimitive, irreducible non-negative A , lim fm " A7 and, a fortiori, lima A ,
m e ™m e

4o not in general exist. To obtain precise results {ar general non-negative A with |
ofA) = 1 it s thus necessary to introduce some mmoothing. For example, in [13] Rothblum
considered Cosaro means of powers of A . In this paper we study the growth of

] g
(1.2) ™ Ltz a o eaTh,

ne1,2,...
vhere q is a certain positive integer.

After nome preliminaries in §2, we use elementary analytic methods in §3 to prove
a theorem on the growth of a(a\ . As corollary, we cbtain a known theorem on the index
of the eigenvalue 1 of A , cf. Schaefer [15, Ch. 1, The. 2.7]. We also give a local

form of the theorem, that is, we show that for 1 < i, § < n there exist integers

k= k(i,4) and q = q{i,§) » 0 auch that the element b::’ of the matrix given by (1.2)
satinfies
(1.n 1im X b::’ > 0 .

"noe»

The analytic results of &3 motivate the investigations in the rest of the paper.

onsored by the United States Army under Contract No, DANG20-75-C-0024. This material
is based upon work supported by the National Science Foundation under Grant No. MCSTH-01087.




The main thrust of the paper is the use of the graph structure of the matrix A to
decrease the integer gii,j) and to determine the integer k(i,{) in (1.3). The reqg-
uisite graph theoretic concepts are developed in 54 and in §5 we state our main result,
Theorem (5.10). As a corollary, we obtain a striking theorem on the index of 1 due to

Rothblus

apply our results to the iteration process (1.1).

rix) = suply

Ri(x) = infip:pxn Ax

L] m
In Theorem (6.8) we find necessary and sufficient conditions for r(A'x) and R{(A'X) to

converge to the spectral radius of A . In §7 , we show that a theorem due to D. H,
Carlson [)] on the existence of non-negative solutions y for {(I-A)y » x , x > is a

consequence of our main results and we extend the theorem.
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2. Preliminaries.
(2.1) DNotations,

let ¢{1), ¢(2),..., be a sequence of non-negative mumbers and k > 0 be an integer.

(1) vim) = t‘»(nk)

k
will denote that vi(m)/m , n = 1,2,..., i{s bounded,
3

(11) wvlm) = olm™)
will denote that lia .'(n)/hk ¢

me =
(fil) wvim) s =
will denote that lim v(-),’nk exists and {s positive.

f
{{v) The above notations will also be used for k = -1, ==, In case that k = -1

*

vim) = 0(m), vim) = al-k). vim) ~ -k will each indicate that there exists p , 0O <
p « 1 , such that ;(:).‘--. « 0(1), In case that Kk = == the above notations will mean
that vin) « for all sufficiently large = . (Thus ¢(m)™ n implies v(m) ~-'l.)
{v) The notation A(m) & -k will be used for a sequence of non-negative matrices

ALY A(2),... to indicate the relation holds for each element.

Combinatorial Resylt.

let r >0 and t » 0 be inteqers. Then

Py, P P
= 5 r 1,72
5 2y iy ® ! - Skt PR |
bt ” Pyt tp. =K
1 t

where the summation is taken over all non-negative {ntegers Pyeesaby vhose sum i r

It is well known that

[+t «1)
(2.3 r « {
4 { T j

r

The simplest way to prove this equality is by considering the coefficient of x of both

sides of the identity

. g y [ - -t
:a‘rtt-lg‘r_l}- xr}
r=0 | r ) ‘=0 J
which is derived from (1-x)"C = (1-00") ... n-m"). rora purely combinatorial proof

see for example Brualdi [2, p. 37)., For t = 0 the above formula implies r; « 1 for

all ¢ >0

We ahall also need some results on the convergence of serfes.

e




]
|
|
|

(2.4) Lemma: let k > 1 and let bp » 0, p=0,1,2,... be a sequence such that
(2.5) il T W St
pew P*q
wvhere q > 0 ., Then
-k ® v
(2.6) = lim ! b = :;
mew p=) P
Proof: Elementary. Alternatively, check that o > - --k % pk'l satisfies the
assumptions of Mardy (8, Theorem 2, p. 43].
(2.7) Lemma: Suppose (2.5) holds, If lim g then
new
-k -
(2.8) s lim J ap -2,
mem L, P BP X
¥
proof: According to Hardy (8, Theorem 16, p. 64)
»
7 .r b._p
(2.9) 1im Pl -y
= =
) U
pt,.. *
since
b B % oxs B (k-1)
D 4 » B = meg~1 2 Zvme
- n - = - =g
; b :; » vi{2kq) ™
pa1 P pe1 P

and the last expression tends to 0 ., If we apply (2.6) to (2.9) we obtain (2.8).

g~




» 1. Analytic approach.
By M, resp. € , we denote the real, resp. complex field, and by m' the non-

negative numbers. The set of real, resp. complex, non-negative r»n matrices will be

‘ n
denoted by ®'" , vesp. € , H." . We also write A 20 for A ¢ . (A is non-
negative) and A > 0 when A is positive (1” » 0, Le),iinok; = lsiein)s

Let A c ™. By spec A we denote the set of eigenvalues of A . Suppose that

spec A = \\1,...,\t‘v . where the ia are pairwise distinct. It is known, cf. Gantmacher

{7, Ch. S5, §3], that there exist non-negative integers Pl“"'pr and unique matrices

z(“’” ¢ ™ ¢ B 0,...0p +» % l,...,r which are linearly independent such that for
o

each polynomial f(r)

A AR A T 2 A G P R NS

S T (af)
(3.1) 1 S W S e ¢ N e
a=l B=0 a
The z(‘ﬂ) are polyncmials in A, p_ ¢ 1 is the size of a largest Jordan-block
lap )
belonging to 1 ., The columns of 2 T are eigenvectors of A corresponding to the
.
ap
eigenvalue 1\ , the rank of 2 vl equal to the number Jordan blocks of size
3

P, * 1 corresponding to ‘-1 . [(The simplest way to obtain (3.1) is by assuming that A
is in Jordan form). As usual we define
3 L
index( ’) P, * 18
That is v 4 1 is the multiplicity of ln in the minimal polynomial of A . We shall

also use a localized index. For 1 « {,§ £ n we put

{af) *
3 - {8: B nciD)os
mdnx“( 1\ 1 ¢ nxia.zu $0 ., .8 p P
wvhere index, (i ) = 0 if z('"') =0, B=0,ieusp If A« tn" and m is any
i3 a i3 o
L (m)

integer we shall denote the clements of X by a ', 1 <4i,) «=m .

i3
Let A « mf“ . We assume throughout the normalization po(A) = 1 . It {s well-

known (Frobenius [6), Gantmacher (7, Ch. 11), Berman~pPlesmons {1, Ch. 2]) that if 1} is
an eigenvalue of A and [3! = 1 , then ) is a root of 1 . Hence there is a positive
integer gq such that 3% <« 1, for all ) ¢ spec A , |i] = 1 . The smallest such integer
q will be called the period of A . If g =1, A will be called aperiodic. For an

irreducidble and aperiodic matrix A > 0 the Frobenius theorem and the formula (3.1) imply
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1tm ™ » gf20)

where " = 1, see for example Berman-Plemmons [1, Them, 4.1). Theorem (3.4) extends the
above equality in a local way, Part (i) of the theorem is an extension of the known in-
equality apparently due to Schaefer [14, p. . 2}
index(}) < index (1) , 1al .

for non-neqgative matrices, see also Schaefer (15, Ch, 1, Thm, 2.7], Berman-Plemmons

1.2). This result and part (i) of Theorem (1.4) could easily be deduced from
the classical Pringsheims theorem functions, e.g. Titchmarsh (16, p. 214). The use of the
Pringsheinm theorem in analyzing the spectral properties of non-negative matrices can be
traced back to Ostrowski {10), see also Xarlin {9) and Schaefer 114, App.] for the
infinite dimensional case. See Friedland (5] for a detailed analysis of the Pringshein
theorem for rational functions which has certain analogs of the Frobenius theorem. For
sake of compelteness we bring a short and elementary independent proof of Theorem (3.4).

To 4o 80 we noed an ecasy lemma which probably i{s known.

(3.3 Lesma. ot L\ ,2 , 3= 1,...,fr be complex numbers, where
g
the l‘ are pailrwise distinct. £/ 1im ( ) e :‘) exists, then g\ « 0 if
C > 3 Q

] 1

mewm gwl
g1

Proof: Since lim o exists for ') * B 3 = 1 , without loss of generality

S i ] a
wo may assume that |3 ! > 1,3 g1, a=1,...,r, Put z = (zl....

: 2 i 1

r
v where u_ = | e g . 1ot A= aiegih ses
= N 1
a=]

- |
Vandermond matrix given by v - )

'
al 8

The assumption of the lempma implies that lim u(') exists., Since V is non-singular,

|mesw
and s0 2= 0 . [ ]

»
lim 2 = lis
" e ™= LR

=1 (m)
V u




(3.4) Theorem. let A « m:m where op(A) =1 . Let 1 <4, j < n.

(1) 1f ) « spec A, |A] =1 , then tndcx”(\) £ mdexl’(l)
(1) Let q be a positive integer such that w1 12 2 e spec A, 3] = 1 and let

K+ 1w n\del“(l). Let

2™ e . waTN.
Then b::) ~ -k . In particular, n‘:” K o(-k) v A2 X2 0.
proof ; (1) Let Hl....,lr"- be the eigenvalues with !\1! T BRI . St

where the | are pairwise distinct. Let
3

d + 1 » max{index {‘A"': as Lo Y

i
It de« -1 then there is nothing to prove. So assume that 4 > 0 .
Suppose that L l:?‘”! 0 for a=1l,...,8 where 1 <8 <r , It follows immediately
from (3.1) that
-

¢ 4, v -

a™ o ¢y " g z ) 4 o(nd)

i3 - 3 a

Hence, by Lesma (1.)3), -:"” ’ o(nd)

let q be a positive integer such that 12 =1, a=1,...,8 . Define

e tt) = ot R T O o

If we take the d-th derivative o* e-(z). we obtain

() 4 d
v (1) -n‘e-_d(r) +« olm ) ,

n
for any fixed 1, 1] £1 , and also $uug (2! = 0 for }?ql-l Ayl 1 Za<w. Put
)
n(' - 4'('.). By (3.1) and the equality above we have
r
{m) 4 ™ «
.5 -
{3 b” = { ) w-_d(‘a):n) ¢+ olm )
a=]l
Now suppose that tndoxn(l) <@+ 1. Then (1.5 implies that b::) - o(ld). But
(m) (m) -
b” = a“ e @ .::‘q . ;n:-, 2 0 and this is a contradiction, Thus dek and this proves (1).

(i1) Suppose that ix =1 . By (3.5 and the preceeding argument we obtain

{m) * L3
b” -.q:l‘o(-).
where 2, = . s 0 . This proves (i{). .

Wi ¢
We now state a global version of Theorem (3.4), vart (ii) which follows immediately

from Theorem (3.4).

-l
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(3.8) Theorem. let A ¢ llt:m where p(A) =1 ., Let q be a positive integer such
that 1T w1 §f ) cspecA, |A] =1 and k + 1 = index()) = index (1), Let
: Sl ot RN G

3 Then

lim --k !‘-) A

- m e -

where F > 0 and F is not identically zero, .
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4. Graph theoretical concepts.

Let A ¢ l«?" and let p(A) = 1 . We may assume, without loss of generality, that

after simultaneous permutations of rows and columns, A is in the rrobenius (6] normal
form which can be found in many references e.9. Gantmacher (7, Vol. II, p. 75). Thus

-
!A” All’ s Alv

A2

(4.1) A =

STV ARSIt S

where the diagonal blocks .\n . a=1,..., v, are irreducible and all subdiagonal
blocks are 0 . (The 1 » 1 matrix 0O (s considered to be irreducible).

Lot A be in Frobenius normal form (4.1). Then the (reduced) graph G{(A) of A

is a subset of (y) x (y) , where (v) = {1,...,v}] and GIA) = {{a,8) « (v} x () :Aal‘ ¥ 0.

{Observe that many authors would call GI{A) the arcset of the graph ({(v) ,GIA)), but we
have no need to mention the vertex set (v) explicitly).
If (a,8) ¢« G(A) we call (a,B) an arc of G(A). If (a,8) is an axrc of G(A),

then o < 8 and (a,a) ¢ GIA), 1 < a_-‘_x.unleu A“ is the 1 1 matrix 0 . Thus

we define a (simple) path from a to £ in G(A) to bea sequence = = (ao,...,a.). where

either 8 >1, 1 cama < ... ¢ a = 8<v and ('l-l'nl, ¢ GA) , §=0,...,8"1,

or s =0 and a=a =8 and (a,a) ¢ G(A). The support of » {8 the set supp * =

cen ) e {1,...,v). We alwvays assume that the a i =0,...,8 have been listed in

i

gtrictly ascending order.

1l « ¢ v , th ‘ 11 ¢ i sy te € G(A)) [ ) 1

1§ 4 Lax en we ca + & singuiar vertex (o x if (;\m -

(This terminology is consistent with that of Richman-Schneider [11]). let 1 < a < B % v,
for any path =+ from a to £ let k(=) + 1 be the mmber of singular a in the sup-

port of = . (Thus note each distinct o is counted only once in kir) + 1). Let

8, €A, < ... <a, , where Kk = k{®) , be all singular vertices in supp = . If there
D £ *
is no path from n to 8 in G(A) we put X{») = ==, Next we set
4.2 kia,8) = maxik{#): = ig a path from o to & in GA) ).
Qe

R A P A S M




We ahall call

in A and

A% ]

ki{a,8)

(3.3) &

distance from {1 to j

A path =

from

vertices in the support

got of maximal paths fram a %o § . PFor each o ¢

Then

4.3}

MNe shall

Also if

{(i,4)

A with

Yy

wo define

gl

call qia,.8)

is & position in hn and (3,%)

the singular distance from a to ¢ , If

position in A then we shall also call

#e

inote our use of square brackets),

» to §

(§,1)

kii,3]

of e is kia,.B) = 1. let 1 <5, 8 <vwv . Iat

Pla,8) let gqlr)

vy « supp v and singular (viz.

ol ) = 1).
Y

3,8) = l.e.m qi#):» Pla,8) .
the local period of {a,8). If Xki{a,8) = O

i a position in A

put qla,8) = qli.i). the local period of ({,3).

~10-

then

ge

is a position

the singular

Pla,b)

be the g.c.4,

qla,B) = 1.,

then we shall

will be called a maximal path if the number of singular

be the

of




5. The main results.

Let A« K. , where o(A) =1, bhe in Frobenius normal form (4.1). It follows
fram the Perron~Frobenius theory for non-negative matrices, ¢.9., Gantmacher [7, Ch, 13)
that there is a diagonal matrix N with positive diagonal elements so that, upon replacing
A by xax "t
(%.1) A = ofh_ IA* ,
% S5 ] an

where A'] is a stochastic matrix,
5

5.2 e o lca<§cwv,
where 1 > o> max{p(h )y ptA ) <1 ,a=1,...,v). Here I § is the { =operator
LR 33 - -
Bnor.,
- m
izh_ = max{ ) ‘:”‘x SR EVOES or 8 e .
f=1 ,
The diagonal matrix X can be constructed as follows. let u'a, be a positive vector
{a) (
satisfying Ao " ;(An’u o) . Denote by !g a diagonal matrix, wvhose diagonal

entrios are the eloments of u'®™. Then X is of the form diu(!l.:lz.--..(vql i for

some small enough positive ¢ . In our subseguent proofs we may assume that A  has been
normalized as adove,

et + be a path in G(A}, Denote by s ¢ 1 the cardinality of supp = . That is
{(s.2. 1) p * { LR I < « e < v,

H P - G:‘. of < PC‘ 52 B. L

Wa define the path matrix Ale} by

} = 4 .o
A“(?. "59 1= 0,000,080
§%
(5.3.44) ‘ A (o) » &, L= 0y 00,m=1
. f.4e1 "x”hl
{ Agy(®) = 0, otherwise 1,3 = 0,...,8,
=
4
($.3.448) Al=) = u”(-ng )

Thus Al+) s in Frobenius normal form and has s+l irreducible diagonal blocks

A“h) .Ac? v L= 0, .8, To avold ambiguity, we write Mﬂ:’ for the (1,3%)
"

block camponent of Af=)", 1,5 = 0,....8.

We now prove a sequence of lemmas for the path matrix Alr) of a given path.




(5.4) Lemma. let A ¢ X" where p(A) = 1. let 1 <a,8<v and v be a path in

GIA) fram 4 to £ . Put k = k(x), where kix) + 1 is the number of singular vertices
in supp » . If A(x¥) is the path matrix given by (5.)), then !A(c):}:,ﬁ- - o(-k).

Proof: We note that

P

P P
(m) T 0 H 5
(5.9 Mv)“ - ! “oo"”ox"“u"’"‘“u-n-(’“u"’
':q." P Ym-8
¢ u
So
P o p
(m), ® . 0 s
!A(-)M J' L0 ) SAM(-H. o lA“(vH'
Ppt:--*p =8

Suppose first that » does not contain singular vertices, {.e. k = -1. Then

¥ P o
T Pt PR J TR L S
08 = = : - R -
pa p'
whore :‘: is given by (2.3}, As 5‘:-' ;l‘ we immediately deduce
1im  "atn® =0 , for any 1,0 < v <1
O
" oe-
Suppose now that k > 0 , Then
\ i 9 q 9
am <o i g0 axem S
Qpt st .
L 9 9 q 9
® S SRR B R R T J e O
ue 9, . Ve LR e )
e " U ey peu-s
-0 ! ..‘l 'l-k .
yed
Hence
(=) s
= P S wen
Ta (=) _F <1 2 ] " i |
On = kel wp ¥ k
The last series converges by the ratio test and “::: ;-. . This establishes the lemma. ®

(5.6) Leswma. Let the assumptions of lLemma 5.4 hold. Assume furthermore that &k > 0,

f.6. the support of + containe singular vertices. Then, for sufficiently large =

Nplz_(n-l)
(5.7 ! Ai=Y
§=0

“ r®

where G is a positive matrix.




in-1)
u“(v)-IOA“(')O ...-A“(n ey By (SRt iR

Since A“h) is irreducible, and (ta dimension does not exceed n , we have I“(!) *» 0,

Wielandt (18], Berman-Flemmons (1, Ch., 2, Tha, 1.3}, Clearly (5.%) implies, for

t = 2sel)(n=1)

Py
(2)A, B, ()

{me4) Z Z
11 11711 oy

A(w)m 2

Py
B _(=)A j(') »
y=0 R o

50 (')Iol(v)l

o0

§ s

P-
A (2} B__(x) A "(0im_(m) .
a8 na L

a~1,8

Por 1,) = 0,...,8 let be the matrix all of whose entries equal 1 and vhose

!Z”
dinension is that of l”(v). Clearly lDo(v) :co!oo. l“(v) ;c.z" where co.c‘ > 0.

Since h".ﬂ(v) ¥ 0, we have
‘H",At.iﬂ(ﬁ.hl,hl“) ;C‘ t‘.‘.“‘
where €y >0, 4= 1,...,8~1, and hence for some ¢ > 0 ,
t P 1
- mel) 0, %
(5.8 I am " 2 e ! Boghoo(™ EgeeseoByy AW TE .
i=1 Puter .09.-.--

In the inequality (%.8) we may restrict the sum on the right hand gide by letting p’ -0

it .a(.\”) e 0, So let Yag = aet Ny be the subscripts of i“ which are singular
vertices and put A“ - A‘x“(.ﬂ +  Bince K”E)k ':'ik » 4t follows that
t P P
- {me §) : - - - o= g = - a
S - ! Fa,oe™ Forrtt A BxoxerPoc®or
=0 F.te0tp men
o *®
where c¢' > 0 and the E‘ oy 1 ® *li..ok  are matrices all of whose entries are 1 .
) P
- - O- -
Pt A“(v! iz a stochastic matrix, { = 0,...,k , whence A“(Wl ti,l-l - !""l.
L= 0,...,k 1t follows that
- (me4) -
F am? s bt e
=0
Moy 1 Kk
where G s 0, The lesma now follows from (2.13), since % ;_;a , for sufficiently
large ®» . .

For 1 < a,8 £ v, we write (again without confusion) mdu‘o ”m - m(lm‘ ’(H‘
L .

as i,] ranges over all positions (i,4) in a“.
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(5.9) Lesma. Let the assumptions of Lemma (5.4) hold. Let gq(#) be the g.c.d. of S

periods of A’“ for singular a « supp = . Let

3 20 ™ « At0)®r ¢ Alw) + ... ¢ AMTH, »
1 q = qi?). Then
3 (4}  In ale), U\doxm‘(n = kis) + 1 ,
) i ™ 50,
O,8 E

ko™
proot fat &« ¢ 1 = tndo:p 'H) in Alr). By Theorem (1.4) there is an integer

q* ., 1 £ q* < n, such that, for

L=
cm™ catm™ iz s am o .. s amTh,
- {m) g
lim » \_(v)o. rm;o, it x_-o,

- -

Put « > k(®) = k contradicts leossma (5.4), and « « k contradicts Lemma {5.6). Hence
€« » X, This proves (i)
Now let q - qi*). If i is in the spectrum of A{r), !3! =1 and, in aAt®),

index {#) = (=} # 1, then I must be an eigenvalue of every AM . for singular

2,8
a ¢ suppie). Hence W e, q = qlx). We immediately obtain {(ii) from Theorem (3.4) and
Lemma (5.6). . .

Ne now state our main result,
{5.10) Theurem. fet A Do non-zerc ns’n matrix normalized bw the condition o(A) =« 1.

Asmume 1 < (, 3 cn. let k= k[i,§] Dbe the singular distance from | to 4§ and

Q= qli,5] be the Jooal period of (1,9). et 3™ w2tz e 2 ¢ ooy + ATH. thes
{m) ®
b” ~n

Proof: As usual, we assumse that A ie in the Frobenius form (4.1). Suppose that

{i,i) is a position in A” and (3,3) a position in A Denote by Ml(a,8) the

1
set of all paths connecting a to 8 . Then we odtwiously have

im) * im)
; A - Afs)
3 o " ala,p  O8t®

(m)

(=)
" Osl=)

ab - f Bi=)

wefifa, 8)

Assume first that Kk = kir) = «= then clearly I::, - A::’

(=) -1 A‘-’ Pty §

= 0. If k= =l>Kk(s) then

lemma (5.4) implies that each Als) = oo

o-m" . So a8 " and again Ad -l.‘ . P




O T

(m)
0s(x)

- ?O.(w) >0,

Assume now that k > 0. If k » kis) Lemma (5.4) implies that 8

However, if k = kiv), then according to Lesma (5.9) lis -'knh):,:’(')
moe =

as qi») divides qgfa,8) = qli,i]. By the definition of k(a,8) there exists

v ¢« N{a,8 such that ki=) = ki{u,8). So lim --ks‘., - ¥ ¢
GRS afl af

{5.11) Corollary. Under the conditions of Theores (5.10),

»
7 ‘(P’.-‘.°l).

o=l

Proot: For k > 0, the result is immediate by lLesma (2.4). If k = -1 , then
by Theovem (5.10) the non-negative series above converges. The assumption k = -1
implies that at least one tem {s positive. Finally if k = -= , n:’;’) -0,
P * 1,2,... , and the result follows. L

Comparing Theorems 1.4 and .10 we firat deduce a local version of Rothblum's
equality and then the equality (tself.
(5.12) Theorem. Let A« K,  where o(A) = 1. Assume that 1 <, § £n, then

tMﬂ“(H = kif,5) ¢+ 1 . b
4

(5.13) Corollary. (Rothblus (12]) Lat A « B where o(A) =1 . Then

index(l) = max tndo-“fl) » max kii,4] <« 1.
led, 350 ; 124,450

Evidently our results (5.10)={5.1)) are sanily modified to apply to all non-negative

A with (A} » 0 .

(n) = o(l.') :




6. Convergent iterative methods for the spectral radius of a non-negative matrix.

nn
Let A ¢« R~ and assume that o(A) > 0 . pret r(x) and Ri(x) be defined as in

(1.4}, Clearly 0 < ri(x) < R{x) < +», It is obvious that

rix) ¢ riax) « rlAx) < mix) .
S0 the sequence r(A‘l). a=0,1,..., is an increasing sequence bounded above by Rix)
4 and the sequence R(A‘l). a«0,1,... , is a decreasing sequence bounded below by rix).
In [4] Collatz observed that for A ¢ ‘:\n and x *» O
(6.1} rix) < plA) < Rix) ,
and when A is irreducible, this inequality is valid for all x > 0, x ¢ 0, see
Wielandt (18], varga (17, p. 32]. Thus the question arises when for A > 0 and x > O,
x ¥ 0

16.2) lim r(A™x) = c(A) = lim R(ATX) .

- -
Wielandt's (18] characterization of o(A) for irreducible A easily implies that .
(6.2) holds for primitive A and all x ¢ ¥, x # 0, x>0 cf Varga (17, p. 34]. This
result follows from the fact that .
m o(A) A =250,
il 3 t t
when A s primitive, where 2 = uv , v >0 AuspfAlu, v >0, v A= pld)y,
v'a = 1. If A is irreducible but imprimitive then (6.2) does not hold unless x is
arthogonal on all eigenvectors of A corresponding to ) such that [i!l = o(A) and
L # olA). e shall show that this condition can be put in equivalent forms. If A ir
irreducible and of period q , then by simultanecus permutations of rows and columns we

now put A into the form

;' - A, s s a ]
| |
| | o - By b o !
] 6.3 3L
: 0 0 0 e S
, 1.
A o A iy 0
| *a |
L ol
1 -16-
i
Iﬁ {
‘ .
BUIMBRaM L o NG o R SR BT S

g




where the diagonal blocks O are square, Frobenius (6], Gantmacher (7, Vol II, p. 62],
Berman ~Plesmons (1, Ch. 2, Tha, 2.20).
(6.4) Lemma., Let A be an irreducible non-negative matrix of period q in form (6.1),

and suppose that p(A) = 1. Let vtl\-v‘.m-u.mxe v>0,uvw>»0, v!u-l,

Aty’ - ujy'j. = 1,...,8"), wu = .2“/Q .

with A , xt - (l‘(”.....lt(q’) . Then the following are equivalent

et O ¥ x ¢ !l': be partitioned conformally

(1 1im A" = (vSo)u ,
-
lim A.x exists ,

moew
:!y’ @0, = 1,..v+9")

t t
Y *o * Vi g

e R = lim r(A™x) = 1,
- R

- e

t
v = {

..,v:q)) has been partitioned conformally with A .

ot
7 %

Proof: We first derive a formula for A'x , ®m = 1,2,... . Let & be a primitive

q=th root of unity. It {#s well known that the eigenvalues of A on the unit circle are
11 - ;rl y 3% 1,...,4 and that each ia is a simple 2ero of the characteristic poly-
nomial. It follows, in the notation of §3, that e 0, a=1,...,9 and that

zhm a=1 Wtbl‘a

- D s B Loes il

y" " Dn-u)v ’ g™ 1,..009"2 ,

’am iz an identity matrix of the same order of AM v a® dyes049Q »

Hence by (1.1)




q-! . 1
i (6.5) Axe ) .“.nw‘us + oll) .

11;0

- -1 .
{6.6) a =v D ' = 2y . &% 0e0ssqel

t
c_ =V )

(aed) Baar! ¢ B Oreeeugmd

Then it follows immediately from (6.6) that
qr! .
(6.7 PO WS e - TS . PR
. Bw0 5

We now prove the equivalence of our five conditions. We show (i) = (ii)= (ii{i) =

(iv) = (1) and (1) = {(v) = (iv),

(1) = {i1) Trivial.

t ~am

(44) = (111) Since lim A-x exists, lim v D "x  also exists, a= 0,...,9~1 . But
¢ .- e ®moew

vu >0, and hence .’-xy\lcf}, a= 1l,.,.,9~1 Dby Lemma (3.3},

172, =af

(441) = (iv) Consider the identity (6.7). Since the Vandermonde matrix qg w ),

a,8 = 0,...,9-1 is unitary the assumption s x'y“ =0 ,a=1,...,9-1 implies that

N ® ,.s ™ ¢

0 1 q-1
(v} « (1) If (iv) hold then co ot bt By r:q_l
0. This establishes (i) in view of (6.5) and (6.6).

, which proves (iv)

and (6.7) implies By & ey W .q-l'

() = (v) Trivial, since v'x >0 and u > 0.

(v) = (1) tlet m=glsr, 0O<r <q-l, Then (6.5) implies

tim AT 4 . x‘” ' r = 0,....9%1
1 e
for some :‘” >0 :‘” # 0. Also
£3'0 o i) S R L Aqim) T

4 A

As A7 {e a direct sum of q irreducible and primitive matrices the assumption x > 0,
x# 0 implies that 1im D' « %' 4 o. ovwiousty 2'® 5 0.
Now lv) mpll::that
2 et uaa® 6l
whence :“’ - l(m and thus l(” - ‘GO’ for r = 1l,...,91 . S0 1lim A‘l - l“” .j

mew

and (i) follows. L]
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" In what follows we give necessary and sufficient conditions on a reducible matrix
A to satisfy (6.2). To do so we need a few more qraph theoretical concepts,
Let G be a graph on (u) = {1,...,v}. Let J be a non~void subset of (v) .
Then a ¢« J is called a final state with respect to J if for any gy o and (a,R) ¢ G,
8 40 . Denoting by F(J) the set of all final states with respect to J . If J = (y)
then o s called a final astate, i.e. (a,8) ¢ G implies that § = a. Define
A(8,)) « max{k{B,a) : a « F(I)} .
If J = {(y) then write d(g) instead of d(E,(v)),
let A >0 be a reducible matrix. We assume that A is in the Frobenius form (4.1).
As in 34, denote by G(A) the (reduced) graph of A . let x > 0, x ¢ 0. Partition
x conformably with A given by (4.1). That is xt - (mt

‘t
05 il 1))

l....,a";{l,...,\»? such that X4y Y 0 if and only if

£ ¢« supp x. NWe shall always assume that By {=1,...,8 have been listed in strictly

). The support of

X s the set supp x =» {a

ascending order.
(6.8} Theovrem
, Let A ¢ B, c{A) = 1. Assume that A is in the Probenius form (4.1). Moreover
it A“ is imprimitive then A“ is the Frobenius form (6.1) 1let x>0,
x # 0. Then {(6.2) holds {f and only if any final state a with respect to the support

of x satisfies
(1) 3 i# a singular vertex ({.e. o(lm) = 1),

(i1) either A“ is primsitive or AM and x satisfy the condition (iv) of Lemma

(a)
(6.4).
Proof: Firast we note that

- (m)

J A x .
S a af (8)
Suppose that o « Fisupp x}. Then

(6.9 (A"x) =
a

= -
(A x)a - Aan Xy

By the definition of Rix) and r(x) we have b

s N

r(0a™ <A™ ra®oa™s .
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T

A"l x . R(A-I)A- x
- aa

m.om
x@a -“oa *la) = aa {a)

(a) *
Hence, since A“ irreducible, by (6.1},
r(A™) < rA" x, ) <o(A ) <R x, ) < RA™X) .
- ag (a)" = aa - aa (a) =
Assume now that (6.2) holds. Then for any final state o with respect to supp X we

aust have

lim r(A® x, ) » 1lim R(A™ x
aa  (a) aa  (a)

" oem- mee =

S0 a is a singular vertex. 1If A“ is {mprimitive then the condition (v) of Lemma 6.4

) madh w3}
aa

holds. Hence A and X satisfy (iv) of Lemma €.4. This proves one direction of

our theorem.

Assume now that if a « Flsupp x) then n(auo) = 1 and if % is not primitive
then AN and LI} satisfy the condition {(iv) of Lemma 6.4,
ot 1 < 8 <v. let d = d(8,J). By our assumption d ¢ -1, If d = -= , then

Wx) =0, m=1,2,... . If 420, then

-4 Z A‘-)

, -"u‘-)e “m o %, * oM

3 ack s

! where X = {a:k(8,a) = 4}, Clearly K ¢ Flsupp x). Thus, to show,
b {6.10) 1m0 300, > 0

1 P 8

it is enough to prove

-d _(m)
{6.11) L] Aﬂo x>0,

for a ¢ Floupp x), k{(f,a) = 4, To prove(6.11), let D be the matrix obtained fram A

by setting Du -0 and h” - Ayé in all other cases, 1 < v,f < v. We then have

n
-4 _im) -4 (m-p) _p
.A&a . onoh Am a’
4 Since in D , the singular distance from § to a is d4-1, we have by Corollary (5.11)
3 < % _p
] lima " ] b‘;p =0, >0

2 L R p=0
and by Lesma (6.4)

14m AP x v >0,
a a

p..
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It easily follows from Lemma (2.7) that

-4 (m) 1 ;
- - s 0
-“. " Aﬂ.n xm d éhvu .
Thus, for each 8 , 1 < B « v , either (A.l)’ = 0, m=1,2,... or (6,10) is satisfied. #
- ;
From this (6.2) follows ismediately. [ ]

We remark that the restriction o(A) = 1 in Theorem (6.8) may be replaced by o(A) >0,

e R = i .
(6.12) Corollary: Let A « P’ ., 0lA) 1. Assume that A is the Frobenius form (4.1). j

let J be an non-empty set of (v ), Then for any x 2 0 whose support is the set J ,
{6.2) holds if and only {f for all final state a with respect to J , n(A‘m) =1 and
Ay s primitive, .
{6.13) Corollary: Let A ¢ ll:m » 0fA) = 1 . Assume that A is in the Frobenius form
4.1

Then for any x > 0, x# 0, (6.2) holds if and only if for each u.MA") - 1

and Am is primitive, a = 1,...,v, .

3 B




+

ot g i < e

7. Non-negative solution of (I =« Aly = x

As an application of our results we give a simple proof of a theorem concerning non-

negative solutions y of

say that § has access to

(I -Aly =x for given x > 0 ., Vor 1 < o,

r in C(A) if there is a path from £ to

viz k(8,a) k.4 -1.
nn :
{7.1) Theorea let A ¢ R with piA) = 1 and supoose that A is in
— e — .

norsal form (4.1). tet x
p > n
{1) There is a y ¢ !l‘
(i1) No singular vertex
3
(145) 1im (X ¢ ..o * Q)
-

"
(iv) Iim Ax =0
|-

n
« li. . Then the following are equivalent:
such that (I - Ay = x.

£ has acceas in G(A) to any a ¢« supp X

x exists.

we shall \

30 Gl

the Frobenjus

Further, if (1) holds and y = 1im (I ¢« A ¢+ ... ¢ A'): s then (I - Aly = x and

DR il

e~
(7.2 Yo 0, if § does not have access to any a « supp x ,
{7.3) Ya 0, 4f 8 has accesms to some a ¢ sUpPp X .
Proof. Let 8™ T4 At ...+ A", If L <cB <y, then

(7.4 g LTRSS SR :

£ “ s } 3

a csupp X
and, by Corollary (5.11), for k = k(§,a) 2 -1,
- )
(7.5.1) lin ® i s(-' u o,
Ba Ba
e~
while for k(d,a) = -=,
{m) =2

(7.5.44) Sg, * Ugy = Om = 1,2,3,... .

We shall prove (1) = {jii)

(i) ™ (ii). Suppose that

s(a)

- 1311) = (1), 1111) = (3v) = {13) .,

(I = Aly = x , where y;ﬁ, Then

x = (1 -A-‘l)y o5 S

ey oo

let £ Dbe a singular vertex. If £ has access to a then k = k(f,a) > 0 and

by (7.4) and (7.5)

g -~
£

(=)
5 %)

(s

(kel)
ben a

»
-

La
2

for large = . MHence 11-0 and a /4 supt x,

(ii) = (iil) Suppose (ii)

holds and let 1 < # < a.

“ll=-

A A 4 RO i i AT Ll e e o

Rt

e Lt o e

Wl sy T 0




R U R RS 5 o s+ <5

LT

i 1t v ¢ supp x, then k= k(f,a) = «~1 , or k= ~= ., Hence lim S‘-): = U x i
% i I fa "a .
f exists, for G esuppx . So by (7.9 lim S(u) X exists, :
;; - Rew
i (=) (m “1 "
! (i) = ) tet y= lim S x. Clearly vy 20, Since A S ) yu gt - ;
3 me - :
: y wsatisfies (I =~ A)y « x . This prooes (i), i
:
g (144) = (iv) . Trivial, :
4 ;
% (iv) = ({i). Suppose that (iv) holds but that (ii) is false. Then there exists a singular j
£ ]
3 § and an a ¢« supp X such that Kk(g§,q) >0 . let g = qlg,a) be the local period and :
3 tet 8™ a®(1 ¢ ... + AT, Then 1im ¥™x = 0 . But by Theorem (5.10) for all suf-
= = w
g ficlently large = ,
¥
: m) X
- (a(")x) » B( X >CH =
: U o> a
where ¢ > 0, and x L2 0. This is a contradiction, and the implication is proved.
(m
5 To complete the proof of the theorem observe that, for y = lim 8 ) Xy
f m e~
® by "
5 . P L V, X
i 3 V€ BUPD X P LY
5 in view of ({i) and (7.5). Since U, >0 if 8 has access to a and Oau - 0 3
£ 2a
othervise, we immediately obtain (7.2) and (7.3). »
: - The equivalence of conditions (i) and (ii) in Theorem (7.1) is due to D. H. Carlson
1 : {3}, We remark that Carlison also showed that if a solution y of (I - Aly = x exists, 4
then the solution satisfying (7.2) and (7.3) is unigque.

-33=
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